Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
1.
Sci Rep ; 14(1): 2747, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38302619

ABSTRACT

Injury mechanism is an important consideration when conducting clinical trials in trauma. Mechanisms of injury may be associated with differences in mortality risk and immune response to injury, impacting the potential success of the trial. We sought to characterize clinical and endothelial cell damage marker differences across blunt and penetrating injured patients enrolled in three large, prehospital randomized trials which focused on hemorrhagic shock. In this secondary analysis, patients with systolic blood pressure < 70 or systolic blood pressure < 90 and heart rate > 108 were included. In addition, patients with both blunt and penetrating injuries were excluded. The primary outcome was 30-day mortality. Mortality was characterized using Kaplan-Meier and Cox proportional-hazards models. Generalized linear models were used to compare biomarkers. Chi squared tests and Wilcoxon rank-sum were used to compare secondary outcomes. We characterized data of 696 enrolled patients that met all secondary analysis inclusion criteria. Blunt injured patients had significantly greater 24-h (18.6% vs. 10.7%, log rank p = 0.048) and 30-day mortality rates (29.7% vs. 14.0%, log rank p = 0.001) relative to penetrating injured patients with a different time course. After adjusting for confounders, blunt mechanism of injury was independently predictive of mortality at 30-days (HR 1.84, 95% CI 1.06-3.20, p = 0.029), but not 24-h (HR 1.65, 95% CI 0.86-3.18, p = 0.133). Elevated admission levels of endothelial cell damage markers, VEGF, syndecan-1, TM, S100A10, suPAR and HcDNA were associated with blunt mechanism of injury. Although there was no difference in multiple organ failure (MOF) rates across injury mechanism (48.4% vs. 42.98%, p = 0.275), blunt injured patients had higher Denver MOF score (p < 0.01). The significant increase in 30-day mortality and endothelial cell damage markers in blunt injury relative to penetrating injured patients highlights the importance of considering mechanism of injury within the inclusion and exclusion criteria of future clinical trials.


Subject(s)
Emergency Medical Services , Wounds, Nonpenetrating , Wounds, Penetrating , Humans , Wounds, Penetrating/complications , Wounds, Nonpenetrating/complications , Proportional Hazards Models , Endothelial Cells , Retrospective Studies
2.
Kidney Int ; 105(3): 508-523, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38163633

ABSTRACT

Sepsis-induced acute kidney injury (S-AKI) is highly lethal, and effective drugs for treatment are scarce. Previously, we reported the robust therapeutic efficacy of fibroblastic reticular cells (FRCs) in sepsis. Here, we demonstrate the ability of FRC-derived exosomes (FRC-Exos) to improve C57BL/6 mouse kidney function following cecal ligation and puncture-induced sepsis. In vivo imaging confirmed that FRC-Exos homed to injured kidneys. RNA-Seq analysis of FRC-Exo-treated primary kidney tubular cells (PKTCs) revealed that FRC-Exos influenced PKTC fate in the presence of lipopolysaccharide (LPS). FRC-Exos promoted kinase PINK1-dependent mitophagy and inhibited NLRP3 inflammasome activation in LPS-stimulated PKTCs. To dissect the mechanism underlying the protective role of Exos in S-AKI, we examined the proteins within Exos by mass spectrometry and found that CD5L was the most upregulated protein in FRC-Exos compared to macrophage-derived Exos. Recombinant CD5L treatment in vitro attenuated kidney cell swelling and surface bubble formation after LPS stimulation. FRCs were infected with a CD5L lentivirus to increase CD5L levels in FRC-Exos, which were then modified in vitro with the kidney tubular cell targeting peptide LTH, a peptide that binds to the biomarker protein kidney injury molecule-1 expressed on injured tubule cells, to enhance binding specificity. Compared with an equivalent dose of recombinant CD5L, the modified CD5L-enriched FRC-Exos selectively bound PKTCs, promoted kinase PINK-ubiquitin ligase Parkin-mediated mitophagy, inhibiting pyroptosis and improved kidney function by hindering NLRP3 inflammasome activation, thereby improving the sepsis survival rate. Thus, strategies to modify FRC-Exos could be a new avenue in developing therapeutics against kidney injury.


Subject(s)
Acute Kidney Injury , Exosomes , Sepsis , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Exosomes/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Acute Kidney Injury/metabolism , Sepsis/complications , Sepsis/metabolism
3.
Ann Surg ; 279(2): 231-239, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37916404

ABSTRACT

OBJECTIVE: To create a blueprint for surgical department leaders, academic institutions, and funding agencies to optimally support surgeon-scientists. BACKGROUND: Scientific contributions by surgeons have been transformative across many medical disciplines. Surgeon-scientists provide a distinct approach and mindset toward key scientific questions. However, lack of institutional support, pressure for increased clinical productivity, and growing administrative burden are major challenges for the surgeon-scientist, as is the time-consuming nature of surgical training and practice. METHODS: An American Surgical Association Research Sustainability Task Force was created to outline a blueprint for sustainable science in surgery. Leaders from top NIH-sponsored departments of surgery engaged in video and in-person meetings between January and April 2023. A strength, weakness, opportunities, threats analysis was performed, and workgroups focused on the roles of surgeons, the department and institutions, and funding agencies. RESULTS: Taskforce recommendations: (1) SURGEONS: Growth mindset : identifying research focus, long-term planning, patience/tenacity, team science, collaborations with disparate experts; Skill set : align skills and research, fill critical skill gaps, develop team leadership skills; DEPARTMENT OF SURGERY (DOS): (2) MENTORSHIP: Chair : mentor-mentee matching/regular meetings/accountability, review of junior faculty progress, mentorship training requirement, recognition of mentorship (eg, relative value unit equivalent, awards; Mentor: dedicated time, relevant scientific expertise, extramural funding, experience and/or trained as mentor, trusted advisor; Mentee : enthusiastic/eager, proactive, open to feedback, clear about goals; (3) FINANCIAL SUSTAINABILITY: diversification of research portfolio, identification of matching funding sources, departmental resource awards (eg, T-/P-grants), leveraging of institutional resources, negotiation of formalized/formulaic funds flow investment from academic medical center toward science, philanthropy; (4) STRUCTURAL/STRATEGIC SUPPORT: Structural: grants administrative support, biostats/bioinformatics support, clinical trial and research support, regulatory support, shared departmental laboratory space/equipment; Strategic: hiring diverse surgeon-scientist/scientists faculty across DOS, strategic faculty retention/ recruitment, philanthropy, career development support, progress tracking, grant writing support, DOS-wide research meetings, regular DOS strategic research planning; (5) COMMUNITY AND CULTURE: Community: right mix of faculty, connection surgeon with broad scientific community; Culture: building research infrastructure, financial support for research, projecting importance of research (awards, grand rounds, shoutouts); (6) THE ROLE OF INSTITUTIONS: Foundation: research space co-location, flexible start-up packages, courses/mock study section, awards, diverse institutional mentorship teams; Nurture: institutional infrastructure, funding (eg, endowed chairs), promotion friendly toward surgeon-scientists, surgeon-scientists in institutional leadership positions; Expectations: RVU target relief, salary gap funding, competitive starting salaries, longitudinal salary strategy; (7) THE ROLE OF FUNDING AGENCIES: change surgeon research training paradigm, offer alternate awards to K-awards, increasing salary cap to reflect market reality, time extension for surgeon early-stage investigator status, surgeon representation on study section, focused award strategies for professional societies/foundations. CONCLUSIONS: Authentic recommitment from surgeon leaders with intentional and ambitious actions from institutions, corporations, funders, and society is essential in order to reap the essential benefits of surgeon-scientists toward advancements of science.


Subject(s)
Biomedical Research , Surgeons , Humans , United States , Mentors , Faculty , Academic Medical Centers , Career Mobility , National Institutes of Health (U.S.)
4.
J Am Coll Surg ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095316

ABSTRACT

BACKGROUND: Major surgery triggers trauma-like stress responses linked to age, surgery duration, and blood loss, resembling polytrauma. This similarity suggests elective surgery as a surrogate model for studying polytrauma immune responses. We investigated stress responses across age groups and compared them to those of polytrauma patients. STUDY DESIGN: Patients undergoing major spinal reconstruction surgery were divided into older (age > 65, n=5) and young (age=18-39, n=6) groups. A comparison group consisted of matched trauma patients (n=8). Blood samples were collected before, during, and after surgery. Bone marrow and peripheral blood mononuclear cells (BMMC and PBMC) were analyzed using CITEseq/scRNAseq. Plasma was subjected to dual-platform proteomic analysis (Somalogic and O-link). RESULTS: Response to polytrauma was highest within 4 hrs. By comparison, the response to surgery was highest at 24 hrs. Both insults triggered significant changes in CD14+ monocytes, with increased inflammation and lower MHC-II expression. Older patient's CD14+ monocytes displayed higher inflammation and less MHC-II suppression; a trend also seen in BMMCs. While NK cells were markedly activated after polytrauma; NK cells were suppressed after surgery, especially in older patients. In plasma, innate immunity proteins dominated at 24 hours, shifting to adaptive immunity proteins by 6 weeks with heightened inflammation in older patients. SASP proteins were higher in older patients at baseline and further elevated during and after surgery. CONCLUSION: While both major surgery and polytrauma initiate immune and stress responses, substantial differences exist in timing and cellular profiles, suggesting major elective surgery is not a suitable surrogate for the polytrauma response. Nonetheless, distinct responses in young vs. older patients highlight the utility of elective spinal in studying patient-specific factors affecting outcomes following major elective surgery.

5.
Immunity ; 56(12): 2736-2754.e8, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38016467

ABSTRACT

Extensive studies demonstrate the importance of the STING1 (also known as STING) protein as a signaling hub that coordinates immune and autophagic responses to ectopic DNA in the cytoplasm. Here, we report a nuclear function of STING1 in driving the activation of the transcription factor aryl hydrocarbon receptor (AHR) to control gut microbiota composition and homeostasis. This function was independent of DNA sensing and autophagy and showed competitive inhibition with cytoplasmic cyclic guanosine monophosphate (GMP)-AMP synthase (CGAS)-STING1 signaling. Structurally, the cyclic dinucleotide binding domain of STING1 interacted with the AHR N-terminal domain. Proteomic analyses revealed that STING1-mediated transcriptional activation of AHR required additional nuclear partners, including positive and negative regulatory proteins. Although AHR ligands could rescue colitis pathology and dysbiosis in wild-type mice, this protection was abrogated by mutational inactivation of STING1. These findings establish a key framework for understanding the nuclear molecular crosstalk between the microbiota and the immune system.


Subject(s)
Proteomics , Receptors, Aryl Hydrocarbon , Animals , Mice , DNA , Homeostasis , Intestines , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
6.
iScience ; 26(12): 108333, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38034362

ABSTRACT

Acute inflammation is heterogeneous in critical illness and predictive of outcome. We hypothesized that genetic variability in novel, yet common, gene variants contributes to this heterogeneity and could stratify patient outcomes. We searched algorithmically for significant differences in systemic inflammatory mediators associated with any of 551,839 SNPs in one derivation (n = 380 patients with blunt trauma) and two validation (n = 75 trauma and n = 537 non-trauma patients) cohorts. This analysis identified rs10404939 in the LYPD4 gene. Trauma patients homozygous for the A allele (rs10404939AA; 27%) had different trajectories of systemic inflammation along with persistently elevated multiple organ dysfunction (MOD) indices vs. patients homozygous for the G allele (rs10404939GG; 26%). rs10404939AA homozygotes in the trauma validation cohort had elevated MOD indices, and non-trauma patients displayed more complex inflammatory networks and worse 90-day survival compared to rs10404939GG homozygotes. Thus, rs10404939 emerged as a common, broadly prognostic SNP in critical illness.

7.
Biochim Biophys Acta Gen Subj ; 1867(11): 130452, 2023 11.
Article in English | MEDLINE | ID: mdl-37652366

ABSTRACT

The interdependent and finely tuned balance between the well-established redox-based modification, S-nitrosylation, and its counteractive mechanism of S-nitrosothiol degradation, i.e., S-denitrosylation of biological protein or non-protein thiols defines the cellular fate in the context of redox homeostasis. S-nitrosylation of cysteine residues by S-nitrosoglutathione, S-nitroso-L-cysteine-like physiological and S-nitroso-L-cysteine ethyl ester-like synthetic NO donors inactivate Caspase-3, 8, and 9, thereby hindering their apoptotic activity. However, spontaneous restoration of their activity upon S-denitrosylation of S-nitrosocaspases into their reduced, free thiol active states, aided by the members of the ubiquitous cellular redoxin (thioredoxin/ thioredoxin reductase/ NADPH) and low molecular weight dithiol (lipoic acid/ lipoamide dehydrogenase/ dihydrolipoic acid/ NADPH) systems imply a direct relevance to their proteolytic activities and further downstream signaling cascades. Additionally, our previous and current findings offer crucial insight into the concept of redundancy between thioredoxin and lipoic acid systems, and the redox-modulated control of the apoptotic and proteolytic activity of caspases, triggering their cyto- and neurotoxic effects in response to nitro-oxidative stress. Thus, this might lay the foundation for the exogenous introduction of precise and efficient NO or related donor drug delivery systems that can directly participate in catering to the S-(de)-nitrosylation-mediated functional outcomes of the cysteinyl proteases in pathophysiological settings.


Subject(s)
Nitric Oxide , Thioctic Acid , Humans , Nitric Oxide/metabolism , Caspase 9/metabolism , Hep G2 Cells , NADP/metabolism , Thioredoxins/metabolism , Thioredoxin-Disulfide Reductase
9.
Cell Death Dis ; 14(5): 319, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169743

ABSTRACT

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single-cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγ presents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8+ T cells were spatially analyzed in aggressive ER-, TNBC, and HER2 + breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8+ T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8+ T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis, suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ + IL1ß/TNFα increased the elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight into distinct neighborhoods where stroma-restricted CD8+ T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.


Subject(s)
Interferon-gamma , Triple Negative Breast Neoplasms , Tumor Microenvironment , Female , Humans , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor Necrosis Factor-alpha/metabolism
10.
Sci Rep ; 13(1): 6618, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095162

ABSTRACT

Dynamic Network Analysis (DyNA) and Dynamic Hypergraphs (DyHyp) were used to define protein-level inflammatory networks at the local (wound effluent) and systemic circulation (serum) levels from 140 active-duty, injured service members (59 with TBI and 81 non-TBI). Interleukin (IL)-17A was the only biomarker elevated significantly in both serum and effluent in TBI vs. non-TBI casualties, and the mediator with the most DyNA connections in TBI wounds. DyNA combining serum and effluent data to define cross-compartment correlations suggested that IL-17A bridges local and systemic circulation at late time points. DyHyp suggested that systemic IL-17A upregulation in TBI patients was associated with tumor necrosis factor-α, while IL-17A downregulation in non-TBI patients was associated with interferon-γ. Correlation analysis suggested differential upregulation of pathogenic Th17 cells, non-pathogenic Th17 cells, and memory/effector T cells. This was associated with reduced procalcitonin in both effluent and serum of TBI patients, in support of an antibacterial effect of Th17 cells in TBI patients. Dysregulation of Th17 responses following TBI may drive cross-compartment inflammation following combat injury, counteracting wound infection at the cost of elevated systemic inflammation.


Subject(s)
Inflammation , Interleukin-17 , Humans , Interleukin-17/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Interferon-gamma/pharmacology , Biomarkers , Th17 Cells
11.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066331

ABSTRACT

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER-breast cancer has been established. However, mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγpresents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8 + T cells were spatially analyzed in aggressive ER-, TNBC, and HER2+ breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8 + T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8 + T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ+IL1ß/TNFα increased elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight of distinct neighborhoods where stroma-restricted CD8 + T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.

12.
J Trauma Acute Care Surg ; 94(6): 803-813, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36787435

ABSTRACT

INTRODUCTION: Severe traumatic injury with shock can lead to direct and indirect organ injury; however, tissue-specific biomarkers are limited in clinical panels. We used proteomic and metabolomic databases to identify organ injury patterns after severe injury in humans. METHODS: Plasma samples (times 0, 24, and 72 hours after arrival to trauma center) from injured patients enrolled in two randomized prehospital trials were subjected to multiplexed proteomics (SomaLogic Inc., Boulder, CO). Patients were categorized by outcome: nonresolvers (died >72 hours or required ≥7 days of critical care), resolvers (survived to 30 days and required <7 days of critical care), and low Injury Severity Score (ISS) controls. Established tissue-specific biomarkers were identified through a literature review and cross-referenced with tissue specificity from the Human Protein Atlas. Untargeted plasma metabolomics (Metabolon Inc., Durham, NC), inflammatory mediators, and endothelial damage markers were correlated with injury biomarkers. Kruskal-Wallis/Mann-Whitney U tests with false discovery rate correction assessed differences in biomarker expression across outcome groups (significance; p < 0.1). RESULTS: Of 142 patients, 78 were nonresolvers (median ISS, 30), 34 were resolvers (median ISS, 22), and 30 were low ISS controls (median ISS, 1). A broad release of tissue-specific damage markers was observed at admission; this was greater in nonresolvers. By 72 hours, nine cardiac, three liver, eight neurologic, and three pulmonary proteins remained significantly elevated in nonresolvers compared with resolvers. Cardiac damage biomarkers showed the greatest elevations at 72 hours in nonresolvers and had significant positive correlations with proinflammatory mediators and endothelial damage markers. Nonresolvers had lower concentrations of fatty acid metabolites compared with resolvers, particularly acyl carnitines and cholines. CONCLUSION: We identified an immediate release of tissue-specific biomarkers with sustained elevation in the liver, pulmonary, neurologic, and especially cardiac injury biomarkers in patients with complex clinical courses after severe injury. The persistent myocardial injury in nonresolvers may be due to a combination of factors including metabolic stress, inflammation, and endotheliopathy.


Subject(s)
Inflammation , Proteomics , Humans , Biomarkers , Critical Care , Injury Severity Score
13.
Ann Surg ; 278(4): e840-e847, 2023 10 01.
Article in English | MEDLINE | ID: mdl-36735480

ABSTRACT

OBJECTIVE: Evaluate the association of survival with helicopter transport directly to a trauma center compared with ground transport to a non-trauma center (NTC) and subsequent transfer. SUMMARY BACKGROUND DATA: Helicopter transport improves survival after injury. One potential mechanism is direct transport to a trauma center when the patient would otherwise be transported to an NTC for subsequent transfer. METHODS: Scene patients 16 years and above with positive physiological or anatomic triage criteria within PTOS 2000-2017 were included. Patients transported directly to level I/II trauma centers by helicopter were compared with patients initially transported to an NTC by ground with a subsequent helicopter transfer to a level I/II trauma center. Propensity score matching was used to evaluate the association between direct helicopter transport and survival. Individual triage criteria were evaluated to identify patients most likely to benefit from direct helicopter transport. RESULTS: In all, 36,830 patients were included. Direct helicopter transport was associated with a nearly 2-fold increase in odds of survival compared with NTC ground transport and subsequent transfer by helicopter (aOR 2.78; 95% CI 2.24-3.44, P <0.01). Triage criteria identifying patients with a survival benefit from direct helicopter transport included GCS≤13 (1.71; 1.22-2.41, P <0.01), hypotension (2.56; 1.39-4.71, P <0.01), abnormal respiratory rate (2.30; 1.36-3.89, P <0.01), paralysis (8.01; 2.03-31.69, P <0.01), hemothorax/pneumothorax (2.34; 1.36-4.05, P <0.01), and multisystem trauma (2.29; 1.08-4.84, P =0.03). CONCLUSIONS: Direct trauma center access is a mechanism driving the survival benefit of helicopter transport. First responders should consider helicopter transport for patients meeting these criteria who would otherwise be transported to an NTC.


Subject(s)
Air Ambulances , Emergency Medical Services , Wounds and Injuries , Humans , Retrospective Studies , Aircraft , Triage , Trauma Centers , Injury Severity Score , Wounds and Injuries/therapy
14.
Ann Surg ; 277(4): e919-e924, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35129530

ABSTRACT

OBJECTIVE: The aim of this study was to assess the survival impact of low-titer group O whole blood (LTOWB) in injured pediatric patients who require massive transfusion. SUMMARY BACKGROUND DATA: Limited data are available regarding the effectiveness of LTOWB in pediatric trauma. METHODS: A prospective observational study of children requiring massive transfusion after injury at UPMC Children's Hospital of Pittsburgh, an urban academic pediatric Level 1 trauma center. Injured children ages 1 to 17 years who received a total of >40 mL/kg of LTOWB and/or conventional components over the 24 hours after admission were included. Patient characteristics, blood product utilization and clinical outcomes were analyzed using Kaplan-Meier survival curves, log rank tests and Cox proportional hazards regression analyses. The primary outcome was 28-day survival. RESULTS: Of patients analyzed, 27 of 80 (33%) received LTOWB as part of their hemostatic resuscitation. The LTOWB group was comparable to the component therapy group on baseline demographic and physiologic parameters except older age, higher body weight, and lower red blood cell and plasma transfusion volumes. After adjusting for age, total blood product volume transfused in 24 hours, admission base deficit, international normalized ratio (INR), and injury severity score (ISS), children who received LTOWB as part of their resuscitation had significantly improved survival at both 72 hours and 28 days post-trauma [adjusted odds ratio (AOR) 0.23, P = 0.009 and AOR 0.41, P = 0.02, respectively]; 6-hour survival was not statistically significant (AOR = 0.51, P = 0.30). Survivors at 28 days in the LTOWB group had reduced hospital LOS, ICU LOS, and ventilator days compared to the CT group. CONCLUSION: Administration of LTOWB during the hemostatic resuscitation of injured children requiring massive transfusion was independently associated with improved 72-hour and 28-day survival.


Subject(s)
Blood Component Transfusion , Wounds and Injuries , Humans , Child , Infant , Child, Preschool , Adolescent , Plasma , Blood Transfusion , Resuscitation , Prospective Studies , ABO Blood-Group System , Wounds and Injuries/therapy
15.
Clin Cancer Res ; 29(10): 1855-1868, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36520504

ABSTRACT

Utilizing targeted therapies capable of reducing cancer metastasis, targeting chemoresistant and self-renewing cancer stem cells, and augmenting the efficacy of systemic chemo/radiotherapies is vital to minimize cancer-associated mortality. Targeting nitric oxide synthase (NOS), a protein within the tumor microenvironment, has gained interest as a promising therapeutic strategy to reduce metastatic capacity and augment the efficacy of chemo/radiotherapies in various solid malignancies. Our review highlights the influence of nitric oxide (NO) in tumor progression and cancer metastasis, as well as promising preclinical studies that evaluated NOS inhibitors as anticancer therapies. Lastly, we highlight the prospects and outstanding challenges of using NOS inhibitors in the clinical setting.


Subject(s)
Neoplasms , Nitric Oxide , Humans , Nitric Oxide/metabolism , Neoplasms/drug therapy , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II/metabolism , Tumor Microenvironment
16.
Crit Care Explor ; 5(11): e0974, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38304708

ABSTRACT

BACKGROUND: Sepsis is a common and deadly syndrome, accounting for more than 11 million deaths annually. To mature a deeper understanding of the host and pathogen mechanisms contributing to poor outcomes in sepsis, and thereby possibly inform new therapeutic targets, sophisticated, and expensive biorepositories are typically required. We propose that remnant biospecimens are an alternative for mechanistic sepsis research, although the viability and scientific value of such remnants are unknown. METHODS AND RESULTS: The Remnant Biospecimen Investigation in Sepsis study is a prospective cohort study of 225 adults (age ≥ 18 yr) presenting to the emergency department with community sepsis, defined as sepsis-3 criteria within 6 hours of arrival. The primary objective was to determine the scientific value of a remnant biospecimen repository in sepsis linked to clinical phenotyping in the electronic health record. We will study candidate multiomic readouts of sepsis biology, governed by a conceptual model, and determine the precision, accuracy, integrity, and comparability of proteins, small molecules, lipids, and pathogen sequencing in remnant biospecimens compared with paired biospecimens obtained according to research protocols. Paired biospecimens will include plasma from sodium-heparin, EDTA, sodium fluoride, and citrate tubes. CONCLUSIONS: The study has received approval from the University of Pittsburgh Human Research Protection Office (Study 21120013). Recruitment began on October 25, 2022, with planned release of primary results anticipated in 2024. Results will be made available to the public, the funders, critical care societies, laboratory medicine scientists, and other researchers.

17.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187532

ABSTRACT

Estrogen receptor-negative (ER-) breast cancer is an aggressive breast cancer subtype with limited therapeutic options. Upregulated expression of both inducible nitric oxide synthase (NOS2) and cyclo-oxygenase (COX2) in breast tumors predicts poor clinical outcomes. Signaling molecules released by these enzymes activate oncogenic pathways, driving cancer stemness, metastasis, and immune suppression. The influence of tumor NOS2/COX2 expression on the landscape of immune markers using multiplex fluorescence imaging of 21 ER- breast tumors were stratified for survival. A powerful relationship between tumor NOS2/COX2 expression and distinct CD8+ T cell phenotypes was observed at 5 years post-diagnosis. These results were confirmed in a validation cohort using gene expression data showing that ratios of NOS2 to CD8 and COX2 to CD8 are strongly associated with poor outcomes in high NOS2/COX2-expressing tumors. Importantly, multiplex imaging identified distinct CD8+ T cell phenotypes relative to tumor NOS2/COX2 expression in Deceased vs Alive patient tumors at 5-year survival. CD8+NOS2-COX2- phenotypes defined fully inflamed tumors with significantly elevated CD8+ T cell infiltration in Alive tumors expressing low NOS2/COX2. In contrast, two distinct phenotypes including inflamed CD8+NOS2+COX2+ regions with stroma-restricted CD8+ T cells and CD8-NOS2-COX2+ immune desert regions with abated CD8+ T cell penetration, were significantly elevated in Deceased tumors with high NOS2/COX2 expression. These results were supported by applying an unsupervised nonlinear dimensionality-reduction technique, UMAP, correlating specific spatial CD8/NOS2/COX2 expression patterns with patient survival. Moreover, spatial analysis of the CD44v6 and EpCAM cancer stem cell (CSC) markers within the CD8/NOS2/COX2 expression landscape revealed positive correlations between EpCAM and inflamed stroma-restricted CD8+NOS2+COX2+ phenotypes at the tumor/stroma interface in deceased patients. Also, positive correlations between CD44v6 and COX2 were identified in immune desert regions in deceased patients. Furthermore, migrating tumor cells were shown to occur only in the CD8-NOS2+COX2+ regions, identifying a metastatic hot spot. Taken together, this study shows the strength of spatial localization analyses of the CD8/NOS2/COX2 landscape, how it shapes the tumor immune microenvironment and the selection of aggressive tumor phenotypes in distinct regions that lead to poor clinical outcomes. This technique could be beneficial for describing tumor niches with increased aggressiveness that may respond to clinically available NOS2/COX2 inhibitors or immune-modulatory agents.

18.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187660

ABSTRACT

Multiple immunosuppressive mechanisms exist in the tumor microenvironment that drive poor outcomes and decrease treatment efficacy. The co-expression of NOS2 and COX2 is a strong predictor of poor prognosis in ER- breast cancer and other malignancies. Together, they generate pro-oncogenic signals that drive metastasis, drug resistance, cancer stemness, and immune suppression. Using an ER- breast cancer patient cohort, we found that the spatial expression patterns of NOS2 and COX2 with CD3+CD8+PD1- T effector (Teff) cells formed a tumor immune landscape that correlated with poor outcome. NOS2 was primarily associated with the tumor-immune interface, whereas COX2 was associated with immune desert regions of the tumor lacking Teff cells. A higher ratio of NOS2 or COX2 to Teff was highly correlated with poor outcomes. Spatial analysis revealed that regional clustering of NOS2 and COX2 was associated with stromal-restricted Teff, while only COX2 was predominant in immune deserts. Examination of other immunosuppressive elements, such as PDL1/PD1, Treg, B7H4, and IDO1, revealed that PDL1/PD1, Treg, and IDO1 were primarily associated with restricted Teff, whereas B7H4 and COX2 were found in tumor immune deserts. Regardless of the survival outcome, other leukocytes, such as CD4 T cells and macrophages, were primarily in stromal lymphoid aggregates. Finally, in a 4T1 model, COX2 inhibition led to a massive cell infiltration, thus validating the hypothesis that COX2 is an essential component of the Teff exclusion process and, thus, tumor evasion. Our study indicates that NOS2/COX2 expression plays a central role in tumor immunosuppression. Our findings indicate that new strategies combining clinically available NOS2/COX2 inhibitors with various forms of immune therapy may open a new avenue for the treatment of aggressive ER-breast cancers.

19.
Front Immunol ; 13: 1038086, 2022.
Article in English | MEDLINE | ID: mdl-36532045

ABSTRACT

Severe injury is known to cause a systemic cytokine storm that is associated with adverse outcomes. However, a comprehensive assessment of the time-dependent changes in circulating levels of a broad spectrum of protein immune mediators and soluble immune mediator receptors in severely injured trauma patients remains uncharacterized. To address this knowledge gap, we defined the temporal and outcome-based patterns of 184 known immune mediators and soluble cytokine receptors in the circulation of severely injured patients. Proteomics (aptamer-based assay, SomaLogic, Inc) was performed on plasma samples drawn at 0, 24, and 72 hours (h) from time of admission from 150 trauma patients, a representative subset from the Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock (PAMPer) trial. Patients were categorized into outcome groups including Early Non-Survivors (died within 72 h; ENS; n=38), Non-Resolvers (died after 72 h or required ≥7 days of intensive care; NR; n=78), and Resolvers (survivors that required < 7 days of intensive care; R; n=34), with low Injury Severity Score (ISS) patients from the Tranexamic Acid During Prehospital Transport in Patients at Risk for Hemorrhage After Injury (STAAMP) trial as controls. The major findings include an extensive release of immune mediators and cytokine receptors at time 0h that is more pronounced in ENS and NR patients. There was a selective subset of mediators elevated at 24 and 72 h to a greater degree in NR patients, including multiple cytokines and chemokines not previously described in trauma patients. These findings were validated in a quantitative fashion using mesoscale discovery immunoassays (MSD) from an external validation cohort (VC) of samples from 58 trauma patients matched for R and NR status. This comprehensive longitudinal description of immune mediator patterns associated with trauma outcomes provides a new level of characterization of the immune response that follows severe injury.


Subject(s)
Cytokines , Interferons , Humans , Critical Illness , Proteomics , Chemokines , Receptors, Cytokine
20.
Mil Med Res ; 9(1): 74, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36567402

ABSTRACT

Emerged evidence has indicated that immunosuppression is involved in the occurrence and development of sepsis. To provide clinical practice recommendations on the immune function in sepsis, an expert consensus focusing on the monitoring and treatment of sepsis-induced immunosuppression was developed. Literature related to the immune monitoring and treatment of sepsis were retrieved from PubMed, Web of Science, and Chinese National Knowledge Infrastructure to design items and expert opinions were collected through an online questionnaire. Then, the Delphi method was used to form consensus opinions, and RAND appropriateness method was developed to provide consistency evaluation and recommendation levels for consensus opinions. This consensus achieved satisfactory results through two rounds of questionnaire survey, with 2 statements rated as perfect consistency, 13 as very good consistency, and 9 as good consistency. After summarizing the results, a total of 14 strong recommended opinions, 8 weak recommended opinions and 2 non-recommended opinions were produced. Finally, a face-to-face discussion of the consensus opinions was performed through an online meeting, and all judges unanimously agreed on the content of this consensus. In summary, this expert consensus provides a preliminary guidance for the monitoring and treatment of immunosuppression in patients with sepsis.


Subject(s)
Immunosuppression Therapy , Sepsis , Humans , Consensus , Delphi Technique , Surveys and Questionnaires , Sepsis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...